Publications

Research Articles
36). Maruzuru, Y., Ichinohe, T., Sato, R., Miyake, K., Okano, T., Suzuki, T., Koshiba, T., Koyanagi, N., Tsuda, S., Watanabe, M.,Arii, J., Kato, A., and Kawaguchi, Y. (2018) Herpes simplex virus 1 VP22
inhibits AIM2-dependent inflammasome activation to enable efficient viral replication
. Cell Host Microbe, 23,
254-265. [PubMed]

35). Yoshizumi, T., Imamura, H., Taku, T., Kuroki, T., Kawaguchi, A., Ishikawa, K., Nakada, K., and
*Koshiba, T. (2017) RLR-mediated antiviral innate immunity requires oxidative phosphorylation activity.
Sci. Rep.
, 7, 5379. [LINK]

34). Moriyama, M., Chen, I-Y., Kawaguchi, A., Koshiba, T., Nagata, K., Takeyama, H., Hasegawa, H.,
and Ichinohe, T. (2016) The RNA- and TRIM25-binding domains of influenza virus NS1 protein are
essential for suppression of NLRP3 inflammasome-mediated IL-1beta secreation. J. Virol., 90, 4105-4114.
[PubMed]

33). Shibata, T., Maki, K., Hadano, J., Fujikawa, T., Kitazaki, K., Koshiba, T., and Kawabata, S. (2015)
Crosslinking of a peritrophic matrix protein protects gut epithelia from bacterial exotoxins.
PLoS Pathog.,
11, e1005244. [PubMed]


32). Kobayashi, Y., Takahashi, T., Shibata, T., Ikeda, S., Koshiba, T., Mizumura, H., Oda, T., and
Kawabata, S. (2015) Factor B is the second lipopolysaccharide-binding protease zymogen in the horseshoe
crab coagulation cascade. J. Biol. Chem., 290, 19379-19386. [PubMed]

31). Nguyen, T.T., Oh, S.S., Weaver, D., Lewandowska, A., Maxfield, D., Schuler, M.H., Smith, N.K.,
Macfarlane, J., Saunders, G., Palmer, C.A., Debattisti, V., Koshiba, T., Pulst, S., Feldman, E.L.,
Hajnoczky, G., and Shaw, J.M. (2014) Proc. Natl. Acad. Sci. USA, 111, E3631-E3640. [PubMed]

30). Yoshizumi, T., Ichinohe, T., Sasaki, O., Otera, H., Kawabata, S., Mihara, K., and *Koshiba, T.
(2014) Influenza A virus protein PB1-F2 translocates into mitochondria via Tom40 channels and impairs
innate immunity.
Nat. Commun., 5, 4713. [PubMed] (プレスリリース)

29). Kobayashi, Y., Shiga, T., Shibata, T., Sakoi, M., Maenaka, K., Koshiba, T., Mizumura, H., Oda, T.,
and Kawabata, S. (2014) The N-terminal Arg residue is essential for autocatalytic activation of
lipopolysaccharide-responsive protease zymogen. J. Biol. Chem., 289, 25987-25995. [PubMed]

28). Ichinohe, T., Yamazaki, T., Koshiba, T., and Yanagi, Y. (2013) A mitochondrial protein mitofusin 2
is required for NLRP3 inflammasome activation after RNA virus infection.
Proc. Natl. Acad. Sci. USA,
110, 17963-17968. [PubMed]

27). Shibata, T., Sekihara, S., Fujikawa, T., Miyaji, R., Maki, K., Ishihara, T., Koshiba, T., and
Kawabata, S. (2013) Transglutaminase-catalyzed protein-protein cross-linking supresses the activity of the
NF-
kB-like transcriptional factor Relish. Sci. Signal., 6, ra61 [PubMed]

26). Sasaki, O., Yoshizumi, T., Kuboyama, M., Ishihara, T., Suzuki, E., Kawabata, S., and *Koshiba, T.
(2013) A structural perspective of the MAVS-regulatory mechanism on the mitochondrial outer membrane
using bioluminescence resonance energy transfer.
Biochim. Biophys. Acta - Mol. Cell Res., 1833,
1017-1027 [PubMed]


25). Onoue, K., Jofuku, A., Ban-Ishihara, R., Ishihara, T., Maeda, M., Koshiba, T., Itoh, T., Fukuda, M.,
Otera, H., Oka, T., Takano, H., Mizushima, N., Mihara, K., and Ishihara, N. (2013) Fis1 acts as
mitochondrial recruitment factor for TBC1D15 that involved in regulation of mitochondrial morphology.
J. Cell Sci., 126, 176-185. [PubMed]

24). Tagawa, K., Yoshihara, T., Shibata, T., Kitazaki, K., Endo, Y., Fujita, T., Koshiba, T., and
Kawabata, S. (2012) Microbe-specific C3b deposition in the horseshoe crab complement system in
a C2/Factor B-dependent or independent manner. PLoS ONE, 7, e36783. [PubMed]

23). *Koshiba, T., Yasukawa, K., Yanagi, Y., and Kawabata, S. (2011) Mitochondrial membrane
potential is required for MAVS-mediated antiviral signaling. Sci. Signal., 4, ra7. [LINK] (
表紙掲載)

22). *Koshiba, T., Holman, H. A., Kubara, K., Yasukawa, K., Kawabata, S., Okamoto, K., Macfarlane,
J., and Shaw, J. M. (2011) Structure-function analysis of the yeast mitochondrial Rho GTPase, Gem1p:
IMPLICATIONS FOR MITOCHONDRIAL INHERITANCE. J. Biol. Chem., 286, 354-362.
[PubMed]

21). Shibata, T., Ariki, S., Shinzawa, N., Miyaji, R., Suyama, H., Sako, M., Inomata, N., Koshiba, T.,
Kanuka, H., and Kawabata, S. (2010) Protein crosslinking by Transglutaminase controls cuticle
morphogenesis in drosophila. PLoS ONE, 5, e13477. [PubMed]

20).  Yasukawa, K., Oshiumi, H., Takeda, M., Ishihara, N., Yanagi, Y., Seya, T., Kawabata, S., and
*Koshiba, T.
. (2009) Mitofusin 2 inhibits mitochondrial antiviral signaling. Sci. Signal., 2, ra47. [LINK]

19).  Ueda, Y., Ohwada, S., Abe, Y., Shibata, T., Iijima, M., Yoshimitsu, Y., Koshiba, T., Nakata, M.,
Ueda, T., and Kawabata, S. (2009) Factor G utilizes a carbohydrate-binding cleft that is conserved
between horseshoe crab and bacteria for the recognition of beta-1,3-D-glucans. J. Immunol., 183,
3810-3818. [PubMed]

18).  Ariki, S., Takahara, S., Fukuoka, T., Ozaki, A., Shibata, T., Endo, Y., Fujita, T., Koshiba, T., and
Kawabata, S. (2008) Factor C acts as a lipopolysaccaride-responsive C3 convertase in horseshoe crab
complement activation. J. Immunol., 181, 7994-8001. [PubMed]

17).  Matsuda, Y., Koshiba, T., Osaki, T., Suyama, H., Arisaka, F., Toh, Y., and Kawabata, S. (2007)
An arthropod cuticular chitin-binding protein endows injured sites with transglutaminase- dependent mesh.
J. Biol. Chem.
, 282, 37316-37324. [PubMed]

16).  Matsuda, Y., Osaki, T., Hashii, T., Koshiba, T., and Kawabata, S. (2007) A cysteine-rich protein
from an arthropod stabilizes clotting mesh and immobilizes bacteria at injury sites. J. Biol. Chem., 282,
33545-33552. [PubMed]

15).  Matsushima, A., Kakuta, Y., Teramoto, T., Koshiba, T., Liu, X., Okada, H., Tokunaga, T.,
Kawabata, S., Kimura, M., and Shimohigashi, Y. (2007) Structural evidence for endocrine disruptor
bisphenol A binding to human nuclear receptor ERR
g. J. Biochem. (Tokyo), 142, 517-524. [PubMed]

14).  Koshiba, T., Hashii, T., and Kawabata, S. (2007) A structural perspective on the interaction
between lipopolysaccharide and Factor C, a receptor involved in recognition of Gram-negative bacteria.
J. Biol. Chem.
, 282, 3962-3967. [PubMed]


13).  Honjo, E., Tamada, T., Maeda, Y., Koshiba, T., Matsukura, Y., Okamoto, T., Ishibashi, M.,
Tokunaga, M. and Kuroki, R. (2005) Crystallization of a 2:2 complex of granulocyte-colony stimulating
factor (GCSF) with the ligand-binding region of the GCSF receptor. Acta Cryst., F61, 788-790.
[PubMed]


12).  Nakao, M., Maki, K., Arai, M., Koshiba, T., Nitta, K. and Kuwajima K. (2005) Characterization
of kinetic folding intermediates of recombinant canine milk lysozyme by stopped-flow circular dichroism.
Biochemistry, 44, 6685-6692. [PubMed]


11).  Koshiba, T., Detmer, S.A., Kaiser, J.T., Chen, H., McCaffery, J.M. and Chan, D.C. (2004)
Structural basis of mitochondrial tethering by mitofusin complexes. Science, 305, 858-862. [LINK]
(Faculty of 1000 biologyにて紹介; Exceptional)

10).  Mine, S., Koshiba, T., Honjo, E, Okamoto, T., Tamada, T., Maeda, Y., Matsukura, Y., Horie, A.,
Ishibashi, M., Sato, M., Azuma, M., Tokunaga, M., Nitta, K. and Kuroki, R. (2004)
Thermodynamic
analysis of the activation mechanism of the GCSF receptor induced by ligand binding. Biochemistry,
43,
2458-2464. [PubMed]


9).  Nakao, M., Arai, M., Koshiba, T., Nitta, K. and Kuwajima, K. (2003) Folding mechanism of canine
milk lysozyme studied by circular dichroism and fluorescence spectroscopy. Spectroscopy, 17, 183-193.

8).  Koshiba, T. and Chan, D.C. (2003) The prefusogenic intermediate of HIV-1 gp41 contains exposed
C-peptide regions.
J. Biol. Chem., 278, 7573-7579. [PubMed]


7).  Koshiba, T., Kobashigawa, Y., Demura, M., and Nitta, K. (2001) Energetics of three-state unfolding
of a protein: Canine milk lysozyme. Protein Eng., 14, 967-974. [PubMed]


6).  Kurokawa, Y., Koganesawa, N., Kobashigawa, Y., Koshiba, T., Demura, M., and Nitta, K. (2001)
Oxidative folding of human lysozyme: The effects of the loss of two disulfide bonds and the
introduction of a calcium-binding site. J. Protein Chem., 20, 293-303. [PubMed]


5).  Kobashigawa, Y., K. Miura, Demura, M., Nemoto, N., Koshiba, T., Nitta, K., and Tsuda, S. (2001)
Assignment of 1H, 13C, and 15N resonances of canine milk lysozyme. J. Biomol. NMR, 19, 387-388.
[PubMed]

4).  Kobashigawa, Y., Demura, M., Koshiba, T., Kumaki, Y., Kuwajima, K., and Nitta, K. (2000)
Hydrogen exchange study of canine milk lysozyme: Stabilization mechanism of the molten globule.
Proteins: Struct. Funct. Genet., 40, 579-589. [PubMed]


3).  Koshiba, T., Yao, M., Kobashigawa, Y., Demura, M., Nakagawa, A., Tanaka, I., Kuwajima, K., and
Nitta, K. (2000) Structure and thermodynamics of the extraordinarily stable molten globule state of
canine milk lysozyme. Biochemistry, 39, 3248-3257. [PubMed]


2).  Koshiba, T., Hayashi, T., Ishido, M., Kumagai, I., Ikura, T., Kawano, K., Nitta, K., and Kuwajima,
K. (1999) Expression of a synthetic gene encoding canine milk lysozyme in Escherichia coli and
characterization of the expressed protein. Protein Eng., 12, 429-435. [PubMed]

1).  Koshiba, T., Tsumoto, K., Masaki, K., Kawano, K., Nitta, K., and Kumagai, I. (1998)
Calorimetric study of mutant human lysozymes with partially introduced Ca2+ binding sites and its
efficient refolding system from inclusion bodies. Protein Eng., 11, 683-690. [PubMed]

Reviews

21).  小柴琢己 (2018) ミトコンドリアを介した自然免疫応答. 医学のあゆみ, 265, 印刷中.

20). 小柴琢己、今村博臣 (2017) 蛍光ATPプローブによるミトコンドリア呼吸活性の評価.
生物物理, 57, 268-270.

19). 小柴琢己 (2017) インフルエンザウイルス感染に伴うミトコンドリア形態への影響.
感染・炎症・免疫, 47, 42-44.


18).  
吉住拓馬、安川開、小柴琢己 (2016) ウイルスタンパク質とミトコンドリアとの相互作用.
福岡医学雑誌, 107, 148-154.

17).  小柴琢己 (2016) ミトコンドリア・ダイナミクスと抗ウイルス自然免疫. 細胞, 48, 39-41.

16).
*Koshiba, T. (2015) Protein-protein interactions of mitochondrial-associated protein via bioluminescence
resonance energy transfer. Biophysics and Physicobiology, 12, 31-35.

15).  小柴琢己 (2015) 抗ウイルス自然免疫におけるミトコンドリアの役割. 細胞工学, 34, 571-575.

14).  
吉住拓馬、小柴琢己 (2015) A型インフルエンザウイルスタンパク質PB1-F2とミトコンドリアとの
相互作用
. 生化学, 87, 144-148.

13).  
佐々木理、小柴琢己 (2014) 生体発光共鳴エネルギー転移を用いた生細胞内でのミトコンドリアタン
パク質間相互作用解析
. 生物物理, 54, 160-162.

12).  
小柴琢己 (2014) ウイルス自然免疫におけるミトコンドリアの生理的意義の解析. 薬学研究の進歩,
30, 7-11.

11).  
小柴琢己 (2013) ミトコンドリアと抗ウイルス免疫. 生化学, 85, 336-344. [PubMed]

10).
*Koshiba, T. (2013) Mitochondrial-mediated antiviral immunity. Biochim. Biophys. Acta, 1833,
225-232. [PubMed]

9).
*Koshiba, T., Bashiruddin, N., and Kawabata, S. (2011) Mitochondria and antiviral innate immunity.
Int. J. Biochem. Mol. Biol.
, 2, 257-262. [PDF]

8).  
小柴琢己、久保山美彩 (2011) 細胞内におけるミトコンドリアの形態調節ならびに抗ウイルス免疫応答.
生物物理
, 51, 174-177.

7).  
小柴琢己 (2011) ミトコンドリア膜電位と抗ウイルス自然免疫. 実験医学, 29, 1269-1272.

6). 
小柴琢己 (2010) ミトコンドリア外膜上でのウイルス免疫制御機構. 生化学, 82, 135-139. [PubMed]

5). 
小柴琢己 (2010) ミトコンドリア外膜タンパク質Mitofusin 2によるウイルス免疫制御機構. 実験医学,
28, 429-432.

4). Kawabata, S., Koshiba, T., and Shibata, T. (2009) The lipopolysaccharide-activated innate immune response
network of the horseshoe crab. Invertebrate Survival Journal, 6, 59-77. [PDF]

3). 
小柴琢己 (2005) ミトコンドリアに見る、生体膜融合機構. 生物物理, 45, 243-246.

2). 
小柴琢己David C. Chan (2004) Mitofusinを介したミトコンドリアの融合機構. 細胞工学, 23,
1174-1175.


1).   Kuwajima, K., Arai, M., Mizuguchi, M., Koshiba, T., and Nitta, K. (1999) The folding mechanisms of
alpha-lactalbumin and Ca2+-binding lysozyme. Old and New Views of Protein Folding, Elsevier Science,
pp.135-144.

トップ アイコントップページへもどる